Zoran Stevanović¹

¹University of Belgrade - Faculty of Mining & Geology, Centre for Karst Hydrogeology of the Department of Hydrogeology, Belgrade, Serbia; zstev_2000@yahoo.co.uk

Key words: karst aquifer, environment, indicator, Dinaric system

INTRODUCTION

The project DIKTAS (Protection and Sustainable Use of the Dinaric Karst Transboundary Aquifer System) funded by GEF and implemented by the UN agencies UNDP and UNESCO's IHP is focused on sustainable utilization of classical Dinaric karst aquifer and especially on issues of transboundary concern. One of the main problems identified during project implementation was the lack of systematically monitored data on quantitative and qualitative parameters of karstic aquifers regime. Although shallow aquifers in alluviums of large rivers are systematically monitored by hydrometeorological services of Dinaric countries (former Yugoslavia and Albania) little monitoring data is available on karstic aquifers. Some improvements have resulted from the implementation of the EU Water Framework Directive but in most of the region current monitoring programs which address groundwater (GW) levels and quality cannot provide adequate data for a reliable assessment of the quantitative and chemical status of GW bodies delineated in karstic aquifers (Stritih et al. 2007; Stevanović et al. 2012). Only in Croatia has the characterization of GW bodies been completed and is monitoring occurring mostly in accordance with requirements of the EU Water Framework Directive (WFD).

One of the tasks of the DIKTAS project was to prepare a proposal for the creation of a new Groundwater Monitoring Network in designated areas of transboundary concern which will fully respect specific karst behaviour. GW monitoring delivers information required for the assessment of long-term trends resulting from the alteration of natural conditions and human activity, as well as data needed to evaluate the effectiveness of programs of measures undertaken to improve the status of groundwater and water-dependent eco systems. It is therefore necessary to expand the existing groundwater monitoring network through the inclusion of GW user facilities (water supply systems, industry, agriculture) and to establish new monitoring sites. Monitoring data are to be used to verify risk assessments and complement human impact assessments.

ENVIRONMENTAL IMPACT INDICATORS

General aspects

Indicators are powerful tools for making important dimensions of the environment and society visible and enabling their management (Dahl, 2012). Water dependent ecosystems are essential components of the watersheds which are under increasing pressure from human activities. In karst, dependent ecosystems are exposed to greater potential hazard if they depend on water from aquifer. Although the problem of aquifer over-exploitation is often exaggerated (Custodio, 1992, Burke and Moench, 2000) variable water regime and low water flows during periods of maximal demands (summer months) can cause stress in many aquatic

systems. The problem is much more sensitive when it comes to the area of transboundary concern (Chilton, 2002; Puri & Aureli, 2005).

There are many references and projects related to environmental indicators which cover different components of aquatic systems (including springs, streams, rivers, lakes, wetlands, coastal lagoons and estuaries). Some of the more recent, such as Vrba and Lipponen (2007) or UNECE (2007), pointed to a group of indicators helping to evaluate pressures on *water quantity* and on *water quality*.

In the GENESIS project, Preda et al. (2012) classify the following indicator packages:

- indicators of hydrogeomorphological units including groundwater: environmental tracers, water balance components, GW level and pressure, GW vulnerability, GW quality, river flow;

- indicators of physico-chemical components or even physico-chemical parameters as indicators: temperature, electrical conductivity, chlorophyll, concentration of different chemical compounds, dissolved oxygen, NO₃, NO₂, NH₄, PO₄, metals;

- indicators of biological compartments / trophodynamic modules: species richness of phytoplankton, macroinvertebrates, fish, diversity indices, indicator species, multimetric indices.

The main components of a designed indicators package are related to *groundwater state*, its quality, vulnerability and pressures, *dependent ecosystems state* and adjacent pressures within the catchment and their *groundwater dependency*. The GENESIS project introduced the term *Groundwater ecosystem protection area* defined as an administrative unit for ecosystem protection and impact assessment. Within these areas human impacts on groundwater quality and groundwater levels and flow patterns should be minimized or reduced below certain thresholds to protect the integrity of ecosystems (Preda et al. 2012).

The International Sava River Basin Commission (2011) which is also responsible for water management of the Inner Dinarides proposed the *List of monitoring parameters* adjusted to the WFD requirements. Core parameters are: oxygen content, pH value, conductivity, nitrate, ammonium, plus parameters which put GW bodies at risk of failing to achieve good chemical status.

Dinaric karst

By evaluating policy in SE Europe Stritih et al. (2007) highlighted the main issues applicable to Dinaric karst as well:

- How to secure a high level of protection of surface and groundwater, preventing pollution and promoting sustainable water use;
- How to secure funds for needed investments for water infrastructure and protection from pollution;
- What is appropriate institutional structure and division of responsibilities in water management.

Water is a major resource in Dinaric karst and is managed by different sectors and authorities in all concerned countries. Harmonization of national legislatives, legal and institutional reforms, creation of a common or unique *Water Information System* and protocol for data exchange are some of the proposals prepared in the Strategic Action Plan (SAP) of the DIKTAS project. When it comes to concrete water and environmental impact assessment several efforts have been undertaken to develop meaningful indicators. DIKTAS diagnostic analysis has prepared an initial list comprising 23 different parameters for assessing pressures on GW quantity and quality and resulting pressures on dependent ecosystems in selected aquifers of transboundary concern. Their knowledge and observation should support sustainable water use and the protection of nature and ecosystems.

No	Group	Indicator	Expressed as	Unit
1	Water	Renewable	ratio: Total flow of surface	mM ³ /year : mM ³ /year
	Resources	freshwater resources	and groundwater in the study	
	Availability		area vs. Total rainwater in	or %
	(Pressures on		study area (TBA catchment)	
1a	Water	Renewable	Sub-indicator: As above but	$mM^{3/4}$ critical months :
	Quantity)	freshwater resources	in critical drought periods	mM ³ /4 critical months
		in recession	(summer-autumn)	or %
		(drought) periods		
2		"Domicile" (and	ratio: Total flow of surface	mM ³ /year : mM ³ /year
		"External")	and groundwater generated in	
		freshwater resources	the part of TBA inside each	or %
			country vs. Total flow of	
			surface and groundwater in the	
			entire TBA catchment	
3		Renewable GW	ratio: Total flow of	mM ³ /year : mM ³ /year
		resources (Dynamic	groundwater in the studied	
		reserves)	TBA catchment vs. Total	or %
			rainwater in the studied TBA	
- 2	-	D 11 OW	catchment	$mM^{3}/4$ critical months :
3a		Renewable GW	Sub-indicator: the same as	
		resources (Dynamic	above but in critical drought	$mM^{3/4}$ critical months
		reserves) in critical	periods (summer-autumn)	or %
4		periods Water emploitation	ratio: Total water amount	mM ³ /year : mM ³ /year
4		Water exploitation index	utilized for different purposes ¹	mwi ⁹ /year : mwi ⁹ /year
		IIIUCX	vs. Total renewable freshwater	or %
			resources	01 /0
5		Groundwater	ratio: Total groundwater	mM ³ /year : mM ³ /year
5		exploitation index	utilized for different purposes ²	miller / year . miller / year
		exploration maex	vs. Total flow of groundwater	or %
			in the study area	
6		Water demands	ratio: Total water demands for	mM ³ /year : mM ³ /year
Ũ		(availability)	different purposes ³ vs. Total	
			renewable freshwater	or %
			resources	
7		Drinking water	ratio: Total water demands for	mM ³ /year : mM ³ /year
		demands	drinking purpose vs. (1) Total	5
			renewable freshwater resour-	or %
			ces and vs.(2) Total flow of	
			groundwater in the study area	
8	1	Water available per	Water available (household	m ³ /cap/
		capita	water access) calculated per	year
			capita per year	
9		Irrigation water	ratio: Total water used for	mM ³ /year : mM ³ /year
		demands and use	irrigation purpose vs. Total	

 Table 1 – Environmental status indicators for selected Dinaric karst transboundary aquifers (TBAs)

¹ Includes different end-users: Drinking water purpose; Irrigation; Industry; Hydropower; Water dependent ecosystems. The Indicator should be calculated for each consumer separately, but also expressed as (1+2+3) vs. (5)² The same as above

 $^{^3}$ Demands to be calculated for each specific end-user as in the case of items 4 and 5.

			11 C 1 4	0/
			renewable freshwater	or %
10	-	I Ividaoa o vyoa vyotoa	resources ratio: Total water used for HP	mM ³ /year : mM ³ /year
10		Hydropower water use	vs. Total renewable surface	muvi ⁻ /year . muvi ⁻ /year
		use	water resources	or %
11	-	Groundwater	Annual depletion of	m/year
11		depletion	groundwater table (av. value)	ni year
		depiction	due to over abstraction.	
			Punctually measured at	
			selected points	
12		Losses	ratio: Total water losses (non-	%
12		103303	$(1011)^{4}$ from the systems	70
			constructed for different	
			purposes vs. Total tapped	
			renewable freshwater	
			resources	
13	Pressures on	Drinking water	ratio: Number of samples of	no : no
15	Water	quality	raw drinking water (from the	
	Quality	Journ's	sources) with inappropriate	or %
	Quality		quality ⁵ vs. Total number of	01 /0
			the controlled samples	
14		Industry waste water	ratio: Flow of untreated	mM ³ /year : mM ³ /year
		index	industrial (incl. mining) waste	
			water (returned to recipients)	or %
			vs. Total flow of waste water	//
			generated in study area	
15		Household waste	ratio: Flow of untreated	mM ³ /year : mM ³ /year
		water index	domestic waste water	5 5
			(returned to recipients) vs.	or %
			Total flow of domestic waste	
			water in study area	
16		Specific pollutants	ratio: Concentration (average)	expressed in mg/l : mg/l
		index	of selected component	(permitted level) or $\mu g/l$:
			(pollutant) vs. maximal	µg/l (permitted level)
			permitted level of the same	or % of samples of
			component (pollutant) ⁶ in	inappropriate quality of
			drinking water	cpec. comp. vs. total
				samples
17		Fertilizer index	ratio: Amount of mineral or	kg/ha
			organic fertilizers used per	or tones /ha
			unit of arable land	
18		Pesticide index	ratio: Amount of pesticide	kg/ha
	4		used per unit of arable land	
19		Landfill status	ratio: Number of inhabitants in	.000 : .000
			study area without sanitary	
			proper solid waste dumps vs.	or %
	{	XX 7 /	Total population in study area	
20		Water reuse	ratio: Reused or recycled	mM ³ /year : mM ³ /year
			water vs. Total flow of waste	0/
- 21	4		water in study area	or %
21		Salt water intrusion	ratio: Total water flow -	mM ³ /year : mM ³ /year
			already salty, brackish or	0/
		(in coastal aquifers)	under direct threat of intrusion	or %

⁴ Note: Mostly referring to water transport. If water leaked from reservoir and is utilized downstream for another purpose this is not a loss. ⁵ No compliance with drinking water standards for whatever reasons (microbiology, chemistry, specific comp.)

⁶ Pollutant or specific component in concentration higher than permitted, such as NO₃, P or PO₃₍₄₎, pesticides, PCB, turbidity, biology indicators, etc. List to be specified in accordance to actual situation within TBAs and in compliance with EU Water Frame Directive for surveillance and operational monitoring

			vs. Total renewable freshwater resources	
22		Protected habitat	ratio: Total surface of protected area vs. Total surface of study area	km ² : km ² or %
23		Water demands of dependent eco system	ratio: Total water demands for downstream dependent eco system vs. Total renewable freshwater resources-dynamic, or Total water demands for (WDES) vs. Minimal discharge	mM ³ /year : mM ³ /year or %
23a		Specific species Sub-indicators: Specific endemic and endangered species (list)	Specific water demands (flow) for endangered species throughout the year (e.g. trout)	Presence of protected endemic species – List

Not all the mentioned indicators have to be determined and followed; selection has to be made in accordance with local conditions. Some indicators are proposed to be observed on an annual basis such as: Renewable groundwater resources; Groundwater exploitation index; Groundwater depletion; while some others need frequent monitoring such as Specific pollutants index; Drinking water quality (by observing selected critical parameters); while others should be observed continously in an established GW Monitoring Network due to the specific intensive and variable regime of karstic aquifer systems. The number of monitoring stations and sampling frequency should be in accordance with EU WFD and European experiences (Jousma and Willems, 1996), proportional to the complexity of status assessment of the groundwater body and presence of pollution trends. In the case of Dinaric karst most of the monitoring sites should be located in drainage areas i.e. along basic levels of erosion and near recharge (ponors) and extraction sites (well fields, intakes).

GENERAL SETUP FOR MONITORING NETWORK IN SELECTED TBAS

The general setup for a Monitoring Network in designated areas of transboundary aquifers should primarily include the following 'hydro" parameters:

1. *Rainfall* and other climate elements (air temperature, humidity, wind, evaporation) observed on a daily basis.

2. *Riverflow* observed on a daily basis – limnigraphs for automatic recording or classical gauging stations installed on major rivers and streams in each country sharing TBA (entrance / exit stations).

3. *Springflow* observed on a daily basis – as above, the limnigraphs for automatic recording or classical gauging stations installed on major springs within TBA.

4. *Groundwater table* observed on a daily basis – automatic data logger ("diver") for groundwater table recording installed in piezometers properly selected to represent aquifer system in recharge/discharge areas in both countries sharing TBA. In addition, a classical manual recording of the groundwater table on a daily/weekly basis (depending on wet/dry seasons) should also take place on the piezometers of the 2nd rank.

5. *Water quality* control is to be organized in compliance with EU WFD requirements for surveillance and operational monitoring. Sampling frequency and the number of observed parameters (salinity, chemistry, turbidity, biology, specific components and pollutants) are to be adapted to local circumstances and pollution risks. As a minimum in the initial stage (surveillance) a set of the complete analyses is to be organized on major springs, streams and piezometers twice a year (high and low water periods).

To be able to define other environmental impact indicators in addition to the above "hydro" parameters, relevant information on surface waters and groundwater regime (quantity and quality) should be collected and provided on a regular basis to the responsible authorities and local water management institutions such as water agencies, hydrometeorological surveys, health and sanitary control centres, and municipalities. Groundwater monitoring and data collection must be the task of all those using groundwater for drinking and process water purposes.

Some demonstration sites in Dinaric karst are already identified and proposed for the installation of a modern monitoring network for observation of karstic groundwater and for climate elements and surface waters regime. Establishment of similar national water information systems, data exchange protocol, synchronization of legislation in the water sector, harmonization of criteria for GW protection and definition of ecological flow, and an experts working group are some of the proposed activities to take place beyond this stage of DIKTAS project.

REFERENCES:

- Burke, J.J., Moench H.M., 2000. *Groundwater and society: Resources, tensions and opportunities*. Spec ed. of DESA and ISET, UN public. ST/ESA/265, New York. pp. 170
- Chilton, J., 2002: Preliminary assessment of transboundary groundwaters in South Eastern Europe. UN/ECE Working Group on Monitoring and Assessment, Core Group on Transboundary Groundwaters, INWEB. pp. 15
- Custodio, E., 1992: Hydrogeological and hydrochemical aspects of aquifer overexploitation. Vol.3., Hydrogeology, *Selected Papers of IAH*, Verlag Heinz Heise, Hannover. 3-27
- Dahl, AL., 2012. Achievements and gaps in indicators for sustainability. *Ecological Indicators* 17:14–19
- International Sava River Basin Commission, 2011: Sava River Basin Management Plan. Background paper no.2: Groundwater bodies in the Sava River Basin, v2.0, Zagreb, pp.37, www.savacommission.org
- Jousma, G., Willems, J.W., 1996: Groundwater monitoring networks. *European Water Pollution Control*, Vol. 6, no. 5
- Preda, E., Kløve, B., Kværner, J. et al., 2012: New indicators for assessing groundwater dependent eco systems vulnerability. Delivereable 4.3. GENESIS FP 7 project: Groundwater and dependent eco systems, pp.84, www.thegenesisproject.eu
- Puri, S., Aureli. Al., 2005: Transboundary aquifers: A global program to assess, evaluate, and develop policy. *Ground Water*, Vol. 43, No. 5, 661–668
- Stevanović, Z., Kukurić, N., Treidel, H., Pekaš, Z., Jolović, B., Radojević, D. Pambuku, A., 2012: Characterization of TB aquifers in Dinaric karst A base for sustainable water management at regional and local scale. *Proceedings of 39 IAH Congress*, Niagara Falls
- Stritih, J., Qirjo, M., Cani, E., Myftiu, A., Spasojević, D., Stavrić, V., Marković, M., Simić, D., Deda, S., 2007: *Environmental Policy in South-Eastern Europe*. UNDP Report prepared for Conference "Environment for Europe", FSC. Belgrade. pp. 240
- United Nations Economic Commission for Europe (UNECE), 2007: Environmental indicators and indicators-based assessment reports: Eastern Europe, Caucasus and Central Asia. United Nations Publ. ECE / CEP 140, New York; Geneva. pp. 93

Vrba, J., Lipponen A., 2007: Groundwater resources sustainability indicators, IHP –VI Series on Groundwater No.14, UNESCO, Paris

Water Framework Directive of EU, WFD 2000/60, Official Journal of EU, L 327/1, Brussels